Members
Kenneth Walsh, PhD, FAHA
Director Whitaker Cardiovascular Institute, Boston University School of medicine
Aram V. Chobanian Distinguished Professor of Cardiovascular Medicine, Boston University School of Medicine
MEC Member: N/A
Email: kxwalsh@bu.edu
https://www.bumc.bu.edu/wci-training-programs/files/2013/03/Walsh-Positions-and-Honors.pdf
Research in the Walsh laboratory is focused in a number of related areas. A major project investigates the signaling- and transcriptional-regulatory mechanisms that control both normal and pathological tissue growth in the cardiovascular system. Many of these studies involve analyses of the PI3-kinase/Akt/GSK/Forkhead signaling axis. This pathway is of critical importance in the regulation of organ growth and body size. Signaling through this pathway controls cellular enlargement (hypertrophy), cell death (apoptosis), and blood vessel recruitment and growth (angiogenesis). We have shown that the PI3-kinase/Akt/GSK/Forkhead signaling axis regulates multiple steps critical in angiogenesis including endothelial cell apoptosis, differentiation, nitric oxide production and migration. We have also shown that some of these signaling steps are important for cardiac hypertrophy during normal postnatal development, and that they regulate myocyte survival in models of heart disease. Using mouse genetic models that alter the expression of Akt in cardiac cells, we have found that perturbations in crosstalk mechanisms between cardiac myocytes and vascular endothelial cells contribute to the transitions from compensated hypertrophy to heart failure. Factors involved in this regulation include VEGF, Fstl1, Fstl3 and Activin-A. Subsequent studies in patient populations have shown that at least one of these factors (Fstl1) is upregulated in clinical heart failure and is predictive of mortality in patients with acute coronary syndrome.
Related studies examine how alterations in the expression of adipocyte-derived cytokines, referred to as adipokines, interfere with normal signaling within the cardiovascular system and thereby contribute to cardiovascular disease. Adiponectin is an anti-inflammatory adipokine that is downregulated in obesity. Studies by the Walsh laboratory were first to show that adiponectin directly acts on the heart and vasculature as a cardio-protective factor. Recently this laboratory identified Sfrp5 as a new anti-inflammatory adipokine and demonstrated that it functions to control systemic metabolism through regulation of non-canonical Wnt signaling in adipose tissue. Finally, we are examining how age-associated loss of skeletal muscle mass affects metabolic and cardiovascular function and is exploring the possibility that muscle-secreted factors (myokines) confer some of the benefits of exercise training on cardiovascular and metabolic diseases.